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Abstract 

Complex roots of a polynomial always occur in pairs. To solve a cubic equation using Newton-Raphson method is 

more advantageous than any other method.  Here in this paper an attempt has been made to find the complex roots 

of the equation 0)1(
2

)1(
3

 kxkxkx  through complex continued fraction also a comparison is made 

regarding number of iterations when 1k . 
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1.INTRODUCTION 

       The Indian mathematician Aryabhata used a 

continued fraction to solve a linear indeterminate 

equation.  For more than a thousand years, any work 

that used continued fractions was restricted to 

specific examples. Throughout Greek and Arab 

mathematical writing, we can find examples and 

traces of continued fractions.  Euler showed that 

every rational can be expressed as a terminating 

simple continued fraction.   He also provided an 

expression for e in continued fraction form. He used 

this expression to show that e  and 2e  are  irrational 

[4]. 

Continued fraction plays an important role in number 

theory.  It is used to represent the rational numbers to 

an another form by using Euclidean algorithm. 
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where ii ba ,  are real or complex numbers is called a 

continued fraction [6]. 

An expression of the form 
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where ,,,, 3210 aaaa  are in )(iZ and sei ' are units 

of complex numbers,   ,...3,2,1,,,1,1  kiiek is 

known as a complex continued fraction [5]. 

The complex continued fraction is commonly 

expressed   as 
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elements of the complex continued fraction. 

In a finite complex continued fraction the number of 

elements are finite, where as an infinite continued 

fraction have infinite number of quantities. 

Therefore 
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finite complex continued fraction and an expression
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an infinite complex continued fraction. 

In a finite or infinite complex continued fraction 

,,,, 3210 aaaa are called the partial quotients  and

,,, 321 eee are known as the partial numerators. 

The length of a finite complex continued fraction 
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The value of the finite complex continued fraction is 

denoted as 
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2. PROPERTIES AND ALGORITHM OF 

COMPLEX CONTINUED FRACTION: 

2.1 Convergence of complex continued fraction:[1] 

The successive convergence of the complex 

continued fractions are  0a  , 
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and sqi ' are called the numerators and denominators 

of  convergent of the complex continued fraction. 

2.2 Properties of complex continued fraction:[1] 

Let 
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complex continued fraction.  We inductively define 

two infinite sequences  kp and kq , 1k by 

           00 ap                  11p  

                          10 q                   01 q  

 

    
1,21   kpepap kkkkk  

    1,21   kqeqaq kkkkk  

2.3 Algorithm of complex continued fraction:[2,5,7] 

Let Cx . Suppose we wish to find continued 

fraction expansion of x . Take )Im()Re(0 xixx  . 

Let  )Re()Re( xxa   and  )Im()Im( xxb   so 

that 0a and 0b . 

Now        )Im()Re(0 xixx .   
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 The floor function   is defined as    
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and    kk xa  . 

The algorithm terminates if the complex continued 

fraction is finite. 

3. FINDING COMPLEX ROOTS OF THE 

EQUATION 0)1()1( 23  kxkxkx

USING COMPLEX CONTINUED FRACTION: 

Consider the equation 

0)1()1( 23  kxkxkx .It can be factored as 

0)1()( 2  xxkx  

In [5] the complex roots of the quadratic equation 

012  xx  have been found. The roots are given 

in terms of complex continued fraction as

 iii  2,21,2,1 and 

 iii 21,2,2   

Clearly the other root of the equation is kx  . 

Taking 1k  we now find complex roots of the 

equation using continued fraction method and 

Newton-Raphson method and compare them. 

4. ILLUSTRATION: 

To find the complex roots of the cubic equation 

013 z : 

Method I: Using Newton-Raphson method[3,8] 

Let 01)( 3  zzf  

Taking iyxz   we get 
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Using the Newton- Raphson method 
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Taking initial approximation as 
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The successive iterations are given below 
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4 (0.31932197, 0.91041889) 

5 (0.49252896,  0.83063199) 

6 (0.49983161,  0.86738607) 

7 (0.49999870,  0.86602675) 

Therefore the approximation of the root is 

0.5+i0.8660. The approximation of the second root is 

0.5-i0.8660. 

Method II: Using Continued fraction method 

The number of roots of the cubic equation 013 z

is three in which one real root -1. Then the cubic 

equation is reduced to the quadratic equation 

012  zz and it has a pair of complex roots.  

In [5] we found that the complex continued fraction  

of  the roots of the given equation 012  zz  are 

 iiiz  2,21,2,1  and 

 iiiz 21,2,2  . 

Using the properties of complex continued fraction   
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Hence one complex root is i8660.05.0  . 

Obviously the pair of the above root is i8660.05.0  . 

From the above two methods it is observed that the 

number of iterations required in complex continued 

fraction method is fewer than the Newton- Raphson  

method.  

 

5. CONCLUSION 

The complex roots of the equation 

0)1()1( 23  kxkxkx
 
for  1k  can be 

solved using Newton-Raphson method and complex 

continued fraction method. Factorization of this 

equation leads to the factors kx   and 

012  xx . In [5] complex solutions of 

012  xx  in terms of   complex continued 

fraction were calculated. As a special case taking 

1k and comparing the solutions, we observe that 

the number of iterations required in complex 

continued fraction method is fewer than the Newton- 

Raphson method. 
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